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Single-cell transcriptomes of the human skin reveal
age-related loss of fibroblast priming
Llorenç Solé-Boldo 1, Günter Raddatz1, Sabrina Schütz1, Jan-Philipp Mallm2, Karsten Rippe 2,

Anke S. Lonsdorf3, Manuel Rodríguez-Paredes 1,4✉ & Frank Lyko1,4✉

Fibroblasts are an essential cell population for human skin architecture and function. While

fibroblast heterogeneity is well established, this phenomenon has not been analyzed sys-

tematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of

more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results

define four main subpopulations that can be spatially localized and show differential secre-

tory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that

this fibroblast ‘priming’ becomes reduced with age. We also show that aging causes a

substantial reduction in the predicted interactions between dermal fibroblasts and other skin

cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work

thus provides evidence for a functional specialization of human dermal fibroblasts and

identifies the partial loss of cellular identity as an important age-related change in the human

dermis. These findings have important implications for understanding human skin aging and

its associated phenotypes.
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The skin is the outermost protective barrier of the organism
and comprises two main layers, the epidermis and the
dermis. The epidermis is a stratified squamous epithelium

composed of keratinocytes (around 95%) and other minority cell
types such as melanocytes, Merkel and Langerhans cells1–4. The
dermis is a much thicker layer located beneath the epidermis and
plays an instrumental role in skin architecture and function5,6. It
consists mostly of the extracellular matrix (ECM) generated by its
numerous fibroblasts, and also includes many other cell types due
to the various structures it harbors, such as the vasculature,
nerves, sweat glands, and lymphatic vessels7. A comprehensive
molecular characterization of all skin cell types, together with the
detailed knowledge of their functions and interactions is crucial to
understand skin homeostasis in health and disease.

Much of our current knowledge about the cellular components
of skin has been generated in mice using reporter constructs and
lineage tracing, as well as fluorescence-activated cell sorting
(FACS) on enzymatically digested tissue. Although limited by the
use of predetermined markers, these methods, combined with
immunohistochemistry (IHC) have characterized numerous cell
(sub)types and defined their locations8–10. These approaches have
also described key differences for the fibroblasts in the superficial
papillary dermis and the underlying reticular dermis9. For
example, while papillary fibroblasts are morphologically thin and
spindle-shaped, reticular fibroblasts are squarer and more
expanded11,12. Further differences include their rate of pro-
liferation, contractility, production of and response to cytokines
and growth factors, as well as the expression of ECM components
such as collagens and proteoglycans6. Examples for the latter
include Collagen alpha-1(IV) chain, which is more expressed by
papillary fibroblasts, or Decorin and Versican, which are more
expressed by papillary and reticular fibroblasts, respectively13,14.
These observations suggest different roles for these two subtypes
of fibroblasts and for the different histological layers they define.
On the functional level, the papillary dermis7 is known to be
essential for epidermal organization due to its close interactions
with keratinocytes6,15,16. Interestingly, it has been suggested that
intrinsic skin aging may have a stronger impact on the papillary
fibroblasts, eventually leading to their loss or impaired
functionality11,17 and thus contributing to the visible clinical
signs of aged skin, such as reduced turgor and increased
wrinkling18.

Besides their fundamental role in skin architecture, dermal
fibroblasts actively participate in cutaneous immune responses,
wound healing and communication with the nervous and vas-
cular systems19–21. This functional diversity is now beginning to
be unveiled by single-cell RNA sequencing (scRNA-seq), which
allows simultaneous profiling of the transcriptomes of thousands
of individual cells. A pioneering study, based on a comparably
low number of single, flow-sorted fibroblasts from mouse dorsal
skin provided evidence for the heterogeneity of these cells and
identified a subtype involved in the fibrotic response to injuries22.
More recently, the analysis of 300 flow-sorted fibroblasts from
young and old mice, respectively, detected two fibroblast sub-
populations that became less well-defined with age, and were
characterized by a reduced expression of extracellular matrix
genes and a gain of adipogenic traits23. In human skin, a scRNA-
seq study of dorsal mid-forearm samples (2742 fibroblasts) found
two main fibroblast subpopulations displaying different mor-
phology and dermal distribution (SFRP2+ and FMO1+), as well
as five minor subpopulations24. However, this study was per-
formed with chronically-sun-exposed skin samples from a het-
erogeneous group of donors, and may thus have been affected by
the cellular and molecular alterations of chronic ultraviolet (UV)
radiation on the skin (photoaging), which can confound data
analysis25,26. Finally, scRNA-seq was also used to complement a

transcriptomic study of bulk flow-sorted and microdissected
papillary and reticular fibroblasts from mouse and human der-
mis27. Based on 184 flow-sorted cells from the abdominal skin of
a single 64 year-old female donor, the analysis further suggested
the existence of several fibroblast subgroups27.

We have now analyzed more than 15,000 cells from skin
samples that were obtained from a defined, sun-protected area
from two “young” (25 and 27 y/o) and three “old” (53–70 y/o)
male Caucasian donors. Our results indicated the presence of four
main fibroblast subpopulations that could be spatially localized
and displayed characteristic functional annotations, consistent
with a differential ‘priming’ of fibroblasts into functionally dis-
tinct subgroups. Subsequent comparative analysis with the
expression profiles obtained from old fibroblasts revealed that all
subgroups show an age-related loss of their identities. Interest-
ingly, old fibroblast subpopulations also expressed genes encoding
specific subsets of skin aging-associated secreted proteins
(SAASP) and were predicted to have decreased interactions with
other skin cell types. Altogether, our work provides a compre-
hensive and detailed analysis of human dermal fibroblasts at the
single-cell level, and provides insight into their age-related
changes.

Results
scRNA-seq analysis of sun-protected human skin. The anatomy
of the skin can vary considerably depending on a number of
endogenous and environmental factors28,29. In addition to the
dermal changes that occur as a result of intrinsic, chronological
aging, there are the effects of photoaging caused by chronic
exposure of the skin to low, non-extreme doses of UV radiation,
the most important cause of extrinsic skin aging25,26,30. To
minimize confounding effects of photoaging, our scRNA-seq
analysis was based on five independent whole-skin samples that
were obtained specifically from the sun-protected inguinoiliac
region of male donors. Since we also sought to address the effects
of intrinsic aging on dermal fibroblasts, samples were obtained
from two younger (25 and 27 y/o) and three older (53, 69, and 70
y/o) donors. After enzymatically and mechanically disrupting the
tissue, dead cells were thoroughly removed and samples were
subjected to scRNA-seq using the 10X Genomics platform (v2
chemistry). This commercial version of the high-throughput
Drop-seq protocol31 identifies cell populations by analyzing the
expression of highly expressed genes in a high number of cells.

In an initial analysis, we obtained an overview of the diverse
skin populations by integrating the cells from all five samples.
Data analysis of the 15,457 cells that passed our quality controls
(Supplementary Table 1, see Methods for details) resulted in a
uniform manifold approximation and projection (UMAP)32 plot
displaying 17 clusters with distinct expression profiles (Fig. 1a).
Importantly, all identified clusters contained cells from all donors
(Supplementary Fig. 1a). Comparing known markers with the
most representative expressed genes of each cluster (Fig. 1b and
Supplementary Data 1) revealed the identity of the 17 cell
clusters, all of which are known constituents of the human skin
and represent nine main cell types (Fig. 1c and Supplementary
Figs. 1b–d). Seven clusters comprised the two key cell types of the
skin, keratinocytes and fibroblasts. Keratinocytes were detected in
three clusters (#5, #7 and #15) and their diversity was mainly due
to their degree of differentiation. While epidermal stem cells
(EpSC) and other undifferentiated progenitors (#7 and #15)
expressed markers such as KRT5, KRT14, TP63, ITGA6, and
ITGB1, differentiated keratinocytes (#5) were defined by KRT1,
KRT10, SBSN, and KRTDAP expression33 (Fig. 1c and Supple-
mentary Fig. 1c). Fibroblasts were identified by their archetypal
markers LUM, DCN, VIM, PDGFRA, and COL1A227, constituted
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the most abundant skin cell type (5948 cells in total), and were
represented by four clusters (#1, #2, #3, and #9, Fig. 1c and
Supplementary Fig. 1c). Despite the lower amount of cells, the
individual analysis of each sample generated a similar number of
clusters and identified the same major cell types (Supplementary
Fig. 2).

Functional and spatial signatures of fibroblast subpopulations.
To investigate whether specific functions could be assigned to the
different fibroblast subpopulations, we performed gene ontology
(GO) analyses using the most representative markers of each
cluster. Since it is well established that skin and its fibroblasts
undergo specific changes upon aging34–36, we only used the
expression profiles of the fibroblasts from young samples (1792
cells) for this analysis (Fig. 2a and Supplementary Data 2).
Classical fibroblast functions related to collagen or ECM pro-
duction and organization were strongly enriched for three of the

clusters (#1, #3, and #9, Fig. 2b). GO analyses also assigned
mesenchymal functions such as skeletal system development,
ossification or osteoblast differentiation to the cells belonging to
clusters #3 or #9 (Fig. 2b). Interestingly, our results also showed a
strong enrichment for functions related to inflammation specifi-
cally in the fibroblasts of cluster #2. Significant examples include
inflammatory response, cell chemotaxis or negative regulation of
cell proliferation, necessary for the final anchoring of leukocytes
(Fig. 2b). Functions that are typically attributed to fibroblasts,
such as collagen or ECM production and organization, did not
appear among the most statistically significant categories for the
cells of this cluster. These findings provide a first illustration for
the functional heterogeneity of the fibroblasts in our samples.

The expression of some specific collagens has also been linked
to particular fibroblast functions37. We therefore analyzed the
four fibroblast clusters at the level of collagen expression patterns.
In agreement with our GO analysis, the results clearly indicated

Fig. 1 Single-cell RNA sequencing analysis of sun-protected whole human skin identifies seventeen distinct cell populations. a Uniform manifold
approximation and projection (UMAP) plot depicting single-cell transcriptomes from whole human skin (n= 5). Each dot represents a single cell (n=
15,457). Coloring is according to the unsupervised clustering performed by Seurat. b Heatmap showing the five most differentially expressed genes of each
cell cluster, as provided by Seurat. Each column represents a single cell, each row represents an individual gene. Two marker genes per cluster are shown
on the right. Yellow indicates maximum gene expression and purple indicates no expression in scaled log-normalized UMI counts. c Average expression of
3–5 well-established cell type markers was projected on the UMAP plot to identify all cell populations (see Methods for details). Red indicates maximum
gene expression, while blue indicates low or no expression of a particular set of genes in log-normalized UMI counts. DC dendritic cells, EC
endothelial cells.
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lower global collagen expression levels in cluster #2 (Fig. 2c). The
analysis also revealed that the collagen genes COL11A1 and
COL24A1, associated with cartilage and bone development38,39,
respectively, were specifically expressed in the fibroblasts of
cluster #9 (Fig. 2c), suggesting a stronger mesenchymal
component for this cell subpopulation. For the remaining
collagen and ECM secreting clusters (#1 and #3), the data
showed a bias in the production of collagens that have previously
been linked to specific dermal locations (Fig. 2c). In particular,

fibroblasts in cluster #3 express COL13A1 and COL23A1, two
known markers of papillary fibroblasts27,40–42. High expression
levels of another epidermal-dermal junction collagen gene,
COL18A1, also supported the location of these fibroblasts within
the papillary layer27,40,43,44.

To better predict the potential localization of the four observed
fibroblast subpopulations within the dermis, we next studied the
expression of sets of genes that have previously been related to
papillary or reticular fibroblasts. While the most representative

Fig. 2 Dermal fibroblast subpopulations display specific spatial and functional transcriptomic signatures. a Left: UMAP plot displaying dermal
fibroblasts from young donors (n= 2). Each dot represents a single cell (n= 1792). Coloring is according to the original unsupervised clustering performed
by Seurat. Right: Bar plots indicating the percentage of fibroblasts corresponding to each subpopulation and donor. b Top 8 enriched Gene Ontology (GO)
terms in each fibroblast subpopulation, sorted by p-value. c Heatmap showing the expression of all collagen genes in the distinct fibroblast subpopulations.
Each column represents a single cell and each row an individual collagen gene. Yellow indicates maximum gene expression while purple indicates no
expression in scaled log-normalized UMI counts. d Average expression of the genes constituting the papillary and reticular gene signatures for predicting
dermal localization of the fibroblasts from the four clusters. In all UMAP gene expression projections, red indicates maximum expression and blue indicates
low or no expression of each particular set of genes in log-normalized UMI counts. In the violin plots, X-axes depict cell cluster number and Y-axes
represent average expression of each set of genes in log-normalized UMI counts. Statistical significance of the expression changes in the gene signatures
between cell clusters is indicated below through the p-values of the corresponding Wilcoxon rank sum tests.
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markers of the papillary fibroblasts comprise APCDD1, AXIN2,
COLEC12, PTGDS, and COL18A1, the reticular fibroblast
signature is typically defined by a group of ten genes, including
MGP or MFAP511,27,40,44 (Supplementary Fig. 3). In agreement
with the collagen expression data, our results showed that the
papillary gene expression signature is mostly restricted to
fibroblasts in cluster #3 (Fig. 2d). In contrast, fibroblasts in
clusters #1, #2, and #9 showed more prominent expression of the
reticular signature, with the highest reticular (and lowest
papillary) expression levels observed in cluster #1 (Fig. 2d).

Taken together, these results suggest that the functional
annotation differences between subpopulations reflect their
priming for distinct functional roles. Our results thus predict
two subpopulations with prominent roles in the generation of
structural collagen and ECM organization, one located in the
reticular dermis (cluster #1, ‘secretory-reticular fibroblasts’) and
the other in the papillary dermis (cluster #3, ‘secretory-papillary
fibroblasts’). A third subpopulation, which was predicted to have
a more reticular localization, showed a greater mesenchymal
potential (cluster #9, ‘mesenchymal fibroblasts’). The fourth and
final subpopulation, also predicted to have a mostly reticular
localization, was characterized by pro-inflammatory functions
(cluster #2, ‘pro-inflammatory fibroblasts’).

The subdivision of fibroblasts into four subpopulations was also
confirmed by a second-level clustering of the 1792 fibroblasts
obtained from the young samples. This approach also identified
both secretory and mesenchymal subpopulations, while further
subdividing the pro-inflammatory subpopulation into two closely
related subclusters that were defined by the differential expression of
a subset of genes (Supplementary Fig. 4a and Supplementary
Data 3). Second-level analyses of the fibroblasts from each individual
sample (young or old) also often subdivided the pro-inflammatory
subpopulation and additionally separated the well-established
dermal papilla-associated fibroblasts, which are characterized by
high CRABP1 and TNN expression levels9,24, from the mesenchymal
subpopulation (Supplementary Figs. 4b, c). However, these addi-
tional subclusters are clearly related to the four main fibroblast
subpopulations and were therefore not considered separately.

Validation of fibroblast subpopulations in skin sections. To
further characterize and validate the four fibroblast subpopulations
from our initial analysis, we identified the most representative
markers for each subpopulation according to their expression in
the specific cell clusters (Table 1 and Supplementary Fig. 4a). Since
no cell-surface markers were found specific enough for all sub-
populations, to assess the microanatomical distribution of the
characterized subpopulations we then performed RNA FISH on
independent, formalin-fixed paraffin-embedded (FFPE) skin sec-
tions from young (28–37 y/o) and old (54-86 y/o) donors. Collagen
Triple Helix Repeat-Containing 1 (CTHRC1), and Adenomatosis
polyposis coli downregulated 1 (APCDD1) were selected to detect
the secretory-reticular and secretory-papillary fibroblasts, respec-
tively. C-C motif chemokine ligand 19 (CCL19) and Apolipoprotein
E (APOE), were used to detect the pro-inflammatory fibroblasts,
and Asporin (ASPN) was chosen as a marker for the mesenchymal
subpopulation. Platelet-derived growth factor receptor alpha
(PDGFRA) was included as a pan-fibroblast control45. RNA FISH
experiments confirmed the location of each secretory subpopula-
tion within the papillary and the reticular dermal layers, respec-
tively (Fig. 3a and Supplementary Fig. 5a). The locations were also
confirmed by immunofluorescence staining of Tetraspanin 8 and
the Collagen alpha-1(XVIII) chain, two additional markers of
the secretory subpopulations (Table 1, Supplementary Figs. 4a and
6a, b). The pro-inflammatory fibroblasts showed a more wide-
spread distribution and a preferential association with the

vasculature (Fig. 3b and Supplementary Fig. 5b). Finally, the
mesenchymal subpopulation was localized mostly to the reticular
dermis, particularly in the vicinity of hair follicles (Fig. 3c and
Supplementary Fig. 5c). This localization was also confirmed by
immunofluorescence staining of Periostin, which is another mar-
ker for this subpopulation (Table 1, Supplementary Figs. 4a and
6c). Together, these results provide important confirmation for our
findings obtained by single-cell transcriptomics and establish
markers for the detection of specific fibroblast subpopulations.

Aging leads to loss of dermal fibroblast priming. We also
investigated the effect(s) of aging at the level of dermal fibroblast
subpopulations. In relative terms, our results suggest an apparent
reduction in the number of mesenchymal fibroblasts in the old
samples (Figs. 2a and 4a). However, this observation could not be
experimentally demonstrated due to the low amount of hair follicles
present in the available tissue sections. Next, we compared the
fibroblast transcriptomes from old donors with their young coun-
terparts. In agreement with the reduced proliferative capacity of
aged cells, the expression profiles from old fibroblasts indicate a
significant delay at the G1/S transition of the cell cycle in the pro-
inflammatory and secretory-papillary subpopulations, as well as a
similar tendency for the secretory-reticular cells (Fig. 4b). Interest-
ingly, GO analyses of the most representative genes from the old
subpopulations (Supplementary Data 4) suggested a considerable
age-dependent loss of the functional annotations for each cluster. In
comparison to young fibroblast subpopulations, the aged counter-
parts showed fewer function-related terms, and/or substantially
reduced p-values, consistent with fewer genes supporting the terms
(Fig. 4c). A similar effect was also seen at the level of collagen gene
transcription, which became particularly decreased in the secretory
clusters (Fig. 4d and Supplementary Figs. 7 and 8a). Finally, aging
also changed the previously defined spatial gene expression sig-
natures, as old papillary fibroblasts presented less papillary and
more reticular gene expression signatures, while reticular fibroblasts
presented a less pronounced reticular gene expression signature
(Fig. 4e and Supplementary Fig. 8b). These findings are in agree-
ment with an age-related loss of fibroblast priming.

Aging effects on SAASP profiles and cell–cell interactions.
Finally, we also analyzed whether age-related transcriptomic

Table 1 Representative marker genes of each fibroblast
subpopulation.

Gene Fold-
change

% cells in
cluster

% cells not
in cluster

Adjusted
p-value

Secretory-reticular WISP2 15.06 0.83 0.074 0
SLPI 11.64 0.729 0.065 0
CTHRC1 7.69 0.759 0.092 0
MFAP5 0.84 0.474 0.057 1.29E-259
TSPAN8 4.28 0.569 0.056 3.44E-107

Pro-inflammatory CCL19 12.51 0.343 0.096 3.79E-75
APOE 8.484.70 0.868 0.281 3.59E-275
CXCL2 4.61 0.698 0.39 2.13E-80
CXCL3 4.35 0.525 0.238 3.77E-63
EFEMP1 3.12 0.564 0.126 6.36E-167

Secretory-papillary APCDD1 6,03 0.78 0.11 0
ID1 3.81 0.60449 0.187 1.80E-109
WIF1 3.74 0.438 0.035 3.01E-232
COL18A1 2.96 0.581 0.168 1.68E-113
PTGDS 2.94 0.559 0.196 2.05E-152

Mesenchymal ASPN 8.75 0.666 0.067 7.31E-291
POSTN 5.44 0.620 0.104 2.46E-170
GPC3 3.58 0.513 0.063 2.83E-177
TNN 3.42 0.337 0.007 2.10E-286
SFRP1 3.26 0.406 0.040 5.61E-165

The table shows the five genes selected as marker genes for each fibroblast subpopulation
according to their fold-change and enriched expression in comparison with the other
subpopulations.
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changes in fibroblast subpopulations could explain age-related
skin phenotypes. For example, it is known that aged fibroblasts
become more susceptible to the accumulation of reactive oxygen
species46. Consistently, GO analyses performed with the most
downregulated genes of each aged cluster (Supplementary Data 5)
showed that genes related to hydrogen peroxide metabolism were
decreased in three of the four fibroblast subpopulations

(Supplementary Fig. 9). Furthermore, old skin is known to
acquire a chronic, low-grade inflammatory phenotype47,48. This
could also be detected at the level of fibroblast subpopulations, as
we found immune response among the main enriched terms in
our GO analyses of the most up-regulated genes of each aged
cluster (Supplementary Figs. 9 and 10 and Supplementary
Data 5). Old fibroblasts also showed changes in the expression of
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Fig. 3 RNA FISH detection of fibroblast subpopulations in young skin. a Representative confocal images showing mRNA expression of CTHRC1 (green)
and APCDD1 (red), selected markers for the secretory-reticular and secretory-papillary fibroblast subpopulations, respectively. Details from the papillary
and reticular regions of the images above are shown in the lower panels (left and center, respectively), and percentage of positive cells for each gene and
per dermal region are shown in the lower right panel. b Representative confocal images showing mRNA expression of CCL19 (green) and APOE (red),
selected markers for the pro-inflammatory fibroblast subpopulation. A detail of a vessel of the images above is shown in the lower panel. c Representative
confocal images showing mRNA expression of ASPN (green), selected marker for the mesenchymal fibroblast subpopulation. A detail of the hair follicle
bulb of the images above is shown in the lower panel. Dashed lines in a and b denote the papillary dermis regions while in c denote the dermal papilla.
Nuclei were counterstained with DAPI. Each assay was performed in three independent young FFPE skin sections (28–37 y/o). Images are shown at ×40
original magnification. Scale bar: 50 μm for main images and 10 μm for detail images. Pap papillary dermis, Ret reticular dermis, Deep ret deep reticular
dermis, HF hair follicle, DP dermal papilla. Statistical analyses were performed using a two-way ANOVA test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001); error bars represent the standard deviation.

Fig. 4 Aging leads to loss of dermal fibroblast priming. a Left: UMAP plot displaying dermal fibroblasts from old donors (n= 3). Each dot represents a
single cell (n= 4156). Coloring is according to the original unsupervised clustering performed by Seurat. Right: Bar plots indicate the percentage of
fibroblasts corresponding to each subpopulation and donor. b Percentage of fibroblasts of each subpopulation that were in the G1, S or G2/M phase of the
cell cycle in young and old skin samples, respectively. c Top 8 enriched Gene Ontology (GO) terms in each old fibroblast subpopulation sorted by p-value.
Coloring is according to the unsupervised clustering performed by Seurat. d UMAP and violin plots displaying the average expression of all collagen genes
in the fibroblasts of all subpopulations, for young and old skin. e UMAP and violin plots displaying the expression of the papillary and reticular gene
signatures in the fibroblasts of all subpopulations, for young and old skin. In all UMAP gene expression projections, red indicates maximum expression and
blue indicates low or no expression of each particular set of genes in log-normalized UMI counts. In the violin plots, X-axes depict fibroblast subpopulations
and Y-axes represent average expression of each set of genes in log-normalized UMI counts. For comparing the ratio of G1 cells between young and old
subpopulations, a two-sided two-proportion z-test was used (b). Statistical analyses in d and e were performed using the Wilcoxon Rank Sum test. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Y young, O old, S.R Secretory-reticular, INF Pro-inflammatory, S.P Secretory-papillary, MES Mesenchymal.
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genes that were previously detected in the aging dermal fibroblast
secretome49. Furthermore, differential expression profiles of
SAASP genes could also be observed in the different old fibroblast
subpopulations (Fig. 5a and Supplementary Fig. 11). In conclu-
sion, our scRNA-seq data thus recapitulates known phenotypes
associated with skin aging.

Finally, fibroblasts are known to establish interactions with
many other skin cell types during homeostasis6. Importantly,
scRNA-seq also provides novel opportunities to identify com-
municating pairs of cells based on the expression of cell-surface
receptors and their interacting ligands50. Interestingly, our results
indicate that a high number of the interactions predicted for

young fibroblasts are lost during intrinsic skin aging. This effect
was particularly pronounced in the two oldest samples (≥69 y/o)
and for interactions involving undifferentiated keratinocytes
(Fig. 5b, c and Supplementary Fig. 12). These findings suggest
that the loss of interactions between fibroblasts and their
communicating cell types represent a previously unrecognized
molecular phenotype of the aging human skin.

Discussion
Single-cell transcriptomics currently represents the most effective
method to define cell populations in a given tissue51,52. However,

Fig. 5 Other age-related changes in dermal fibroblast subpopulations. a Expression of genes encoding skin aging-associated secreted proteins (SAASP)
(rows) that are differentially (fold-change > 1.25) expressed between young and old fibroblasts in at least one subpopulation (columns). The heatmap
shows the mean relative expression by cluster. b Bar plots showing the number of ligand-receptor interactions predicted for the four observed fibroblast
subpopulations with the rest of the cell types identified in human skin, in the two young (≤27 y/o) (up) and the two oldest (≥69 y/o) (down) samples. The
medium-aged sampled (53 y/o) showed an intermediate phenotype in this analysis and was therefore omitted. Coloring and numbering are according to
the original unsupervised clustering performed by Seurat. c Summary of the top four exclusive interactions lost between each fibroblast subpopulation and
undifferentiated keratinocytes, sorted by p-value. The table shows interactions in both directions for each pair. Y young, O old, S.R Secretory-reticular, INF
Pro-inflammatory, S.P Secretory-papillary, MES Mesenchymal.
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whole human skin has not been fully analyzed yet, as previous
single-cell studies were either focused on sun-exposed material
obtained from a heterogeneous group of donors24 or provided
limited coverage from flow-sorted cells27. Our study analyzes
single-cell transcriptomes from more than 15,000 skin cells,
including more than 5000 fibroblasts, which were all obtained
from the same sun-protected location from healthy male donors.
This allowed us to minimize confounding effects and provide
what we believe is the first description of intrinsic age-related
changes in human dermal fibroblasts.

We describe an overall cellular composition of the human skin
samples that is consistent with previous observations24. In addi-
tion, we also describe several fibroblast subpopulations with
distinct functional annotations and spatial localizations in the
dermis. These findings provide an important extension of pre-
vious observations describing fibroblast heterogeneity, including
the distinction of papillary and reticular fibroblasts6,9,45. More
specifically, our results suggest the existence of four major dermal
fibroblast subpopulations: secretory-reticular, secretory-papillary,
pro-inflammatory, and mesenchymal fibroblasts.

Interestingly, the functional annotations of the four sub-
populations all reflect known functions of fibroblasts. For
example, the secretion of collagens and ECM components is
considered as the defining function of dermal fibroblasts, with
well-known differences in the secretory activities of papillary and
reticular fibroblasts. Consistently, our results define secretory-
papillary and secretory-reticular fibroblasts as two separate sub-
populations. Similarly, it is well known that fibroblasts can dif-
ferentiate into other mesenchymal cell types53,54, which is
reflected by the predicted attributes of our mesenchymal sub-
population. Finally, the pro-inflammatory functions of dermal
fibroblasts are also well established55 and correspondingly
reflected in the transcriptomic profiles of our pro-inflammatory
fibroblast subpopulation. Our results thus suggest that human
dermal fibroblast heterogeneity can be explained by the existence
of subpopulations that are primed for different functions.

While our secretory-papillary and secretory-reticular fibro-
blasts were defined by the expression of previously established
markers for these two dermal layers, the pro-inflammatory
fibroblasts presented a mixed signature that was supported by
their widespread localization within the dermis in validation
experiments. These findings are in agreement with the notion that
the entire dermis may require the protective function of pro-
inflammatory fibroblasts. Similarly, the mesenchymal fibroblasts
also displayed a more mixed localization signature, which may
indicate different localizations of specific subpopulations. For
example, dermal papilla-associated fibroblasts expressed a papil-
lary dermis signature (Supplementary Fig. 13), consistent with
their shared origin with papillary fibroblasts9.

We also notice some differences to previous studies. For
example, Tabib et al. described only two major fibroblast sub-
populations that were defined by the expression of SFRP2 and
FMO1, as well as five additional, minor, closely related sub-
populations24. However, these subpopulations were not func-
tionally defined and their significance remained unclear. In our
dataset, expression of FMO1 was very low in all dermal fibro-
blasts, while SFRP2 was expressed by both secretory subpopula-
tions and a subgroup of the pro-inflammatory subpopulation
(Supplementary Fig. 14a). While the reasons for these dis-
crepancies remain to be elucidated, it is possible that the lower
number of cells, in combination with sampling from a different,
sun-exposed region (dorsal forearm) may have resulted in a less
accurate stratification of fibroblast subpopulations. Furthermore,
the scRNA-seq analysis performed by Philippeos et al. with 184
flow-sorted fibroblasts from a single abdominal skin sample
detected five subpopulations27. The two major subpopulations

expressed markers that might localize them in different dermal
layers, but the significance of the minor subpopulations remained
unclear. While one of these subpopulations comprised only five
cells, two others appeared to contain pericytes and pre-adipo-
cytes, respectively27. In our fibroblasts most of the genes that were
used to define those five subpopulations did not show significant
expression levels, which may be attributed again to the funda-
mental differences existing between both experimental approa-
ches (Supplementary Fig. 14b).

Our results also suggest an age-related loss of fibroblast
priming. This was detectable both at the level of genes defining
their functional annotations, and in the expression of their spatial
localization signatures. These findings provide an important
complement to a recent study that described age-related identity
loss in murine fibroblasts23. While we also observed an upregu-
lation of genes related to immune response and inflammation, we
did not detect an upregulation of adipogenesis genes (Supple-
mentary Fig. 15). These similarities and differences are likely
explained by the limited evolutionary conservation of mouse and
human skin56.

Finally, fibroblasts maintain various paracrine interactions with
other skin cell types, as well as direct cell–cell interactions6,45. For
instance, their contacts along the dermal-epidermal junction with
the epidermal stem and progenitor cells (EpSPCs) are key for
proper epidermal homeostasis6,15,16. Importantly, our analysis of
the interactome of each fibroblast subpopulation indicates that
aging causes a considerable decrease in their potential interac-
tions, including interactions with undifferentiated keratinocytes.
This may represent a previously unknown molecular feature of
skin aging. Taken together, our study thus reveals an important
pattern of fibroblast heterogeneity at the level of cellular sub-
populations and provides novel insight in the role of fibroblasts in
skin aging.

Methods
Clinical samples. Skin specimens for single-cell RNA sequencing (see Supple-
mentary Table 1) were obtained from patients undergoing routine surgery at the
Department of Dermatology, University Hospital of Heidelberg. Only remnant,
clinically healthy skin, not required for diagnostic purposes, was analyzed after
written informed consent by the patient and as approved by the Ethics Committee
of Heidelberg University (S-091/2011) in compliance with the current legislation
and institutional guidelines. All patients underwent a full body skin examination by
a dermatologist prior to surgery and medical records were reviewed with a parti-
cular focus on skin diseases and/or skin-affecting co-morbidities. No clinical evi-
dence or a history of an inflammatory or systemic skin disease (e.g., systemic
sclerosis, lupus erythematosus), co-morbidities typically affecting the skin and/or
UV-sensitivity of the skin (e.g., chronic immunosuppression, chronic renal failure)
was recorded. Furthermore, no patient had a history of UV-therapy, showed
clinical evidence of acute or chronic actinic skin damage or presented tanned skin
in the inguinoiliac region at the time of surgery.

An independent set of skin samples was used for validation experiments. Old
skin specimens for mRNA fluorescence in situ hybridization and
immunohistochemistry were also obtained from patients undergoing routine
surgery at the Department of Dermatology of Heidelberg University Hospital, and
belonged to both sun-exposed and non-sun-exposed body areas. Young skin
specimens were purchased from Genoskin (France) as FFPE sections or again
obtained from the Department of Dermatology, University Hospital of Heidelberg.
These samples were taken from non-sun-exposed body areas of healthy (male and
female) individuals with no present co-morbidities.

Single-cell RNA sequencing. For each experiment, 4-mm punch biopsies were
obtained from healthy whole-skin specimens, immediately after resection from the
inguinoiliac region of five male subjects. Donors’ characteristics are summarized in
Supplementary Table 1. Samples were kept in MACS Tissue Storage Solution
(Miltenyi Biotec, cat. no. 130-100-008) for no longer than 1 h before their enzy-
matical and mechanical dissociation with the Whole Skin Dissociation kit for
human material (Miltenyi Biotec, cat. no. 130-101-540) and the Gentle MACS
dissociator (Miltenyi Biotec), following the manufacturer’s instructions. Cell sus-
pensions were then filtered through 70-µm cell strainers (Falcon) and depleted of
apoptotic and dead cells with the Dead Cell Removal Kit (Miltenyi Biotec, cat. no.
130-090-101).
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Sequencing libraries were subsequently prepared following the Drop-seq
methodology31, using a Chromium Single Cell Controller and the v2 chemistry
from 10X Genomics (cat. no. 120237). Thus, ~20,000 cells per sample were mixed
with the retrotranscription reagents and pipetted into a Chip A Single Cell (10X
Genomics, cat. no. 1000009), also containing the Single Cell 3’ Gel Bead suspension
and Partitioning Oil. The Chip was subsequently loaded into a Chromium Single
Cell Controller (10X Genomics) where the cells were captured in nanoscale
droplets containing both the reagents needed for reverse transcription and a gel
bead. Resulting gel bead-in-emulsions (GEMs) were then transferred to a
thermocycler in order to perform the retrotranscription, following the
manufacturer’s protocol. Each gel bead contained a specific 10X Genomics barcode,
an Illumina R1 sequence, a Unique Molecular Identifier (UMI) and a poly-dT
primer sequence. Therefore, from poly-adenylated mRNA the reaction produced
full-length cDNA with a unique barcode per cell and transcript, which allowed
tracing back all cDNA coming from each individual cell. Following an
amplification step, cDNA was further processed by fragmentation, end repair and
A-tailing double-sided size selection using AMPure XP beads (Beckman Coulter,
cat. no. A63881). Finally, Illumina adaptors and a sample index (10X Genomics,
cat. no. 120262) were added through PCR using a total number of cycles adjusted
to the cDNA concentration. After sample indexing, libraries were again subjected
to double-sided size selection. Quantification of the libraries was carried out using
the Qubit dsDNA HS Assay Kit (Life Technologies), and cDNA integrity was
assessed using D1000 ScreenTapes (Agilent Technologies). Paired-end (26+ 74 bp)
sequencing (100 cycles) was finally performed with a HiSeq 4000 device (Illumina).

Data analysis. Raw sequencing data was processed with Cell Ranger, version 2.1.0,
from 10X Genomics. For downstream analysis of the data we used the Seurat
package version 3.1.157 in R version 3.5.158. 16,062 cells passed the quality control
steps performed by Cell Ranger. To remove possible cell doublets, we filtered out
cells with more than 7500 expressed genes, and to remove potential apoptotic cells
we discarded cells with more than 5% mitochondrial reads. The application of
these filters resulted in a final dataset of 15,457 single-cell transcriptomes.

In order to account for inter-individual differences and correct for batch effects,
we combined all our samples using the standard integration protocol described in
Seurat. In a first step, we performed standard pre-processing of each dataset
independently. This individual pre-processing included log-normalization of the
UMI counts and the identification of the 2000 more variable genes per sample.
Next, we used the function FindIntegrationAnchors() with default parameters and
30 canonical correlation analysis (CCA) dimensions to identify the integration
anchors between our five datasets. These anchors were subsequently used for
integration using the IntegrateData() function, again with the first 30 CCA
dimensions and default parameters.

The integrated data were then used for standard cell clustering and visualization
with Seurat, which uses the 2000 most variable genes of the integrated dataset as
input. First, data were scaled using the ScaleData() function and principal
component analysis (PCA) dimensions were calculated with the RunPCA()
function. Next, unsupervised clustering of the data was performed with the
FindNeighbors() and FindClusters() functions. For the FindNeighbors() function,
we used the first 20 PCA dimensions to construct a Shared Nearest Neighbor
(SNN) Graph for our dataset. Then, we clustered the cells with the function
FindClusters() using a shared nearest neighbor (SNN) modularity optimization-
based clustering algorithm with a resolution of 0.4. Finally, for visualization, we
used the RunUMAP() function with default parameters and 20 PCA dimensions.

To identify genes with enriched expression in each cell cluster we used the
FindAllMarkers() function in the integrated dataset. This function uses a Wilcoxon
Rank Sum test to identify the representative genes of each cluster. These
representative genes were used to establish the cell identity of each cluster, together
with markers found in the literature for cell types typically present in the human
skin. Average expression of a particular set of marker genes was used for cell type
identification and was projected into UMAP or violin plots. Gene expression
signatures used for the definition of cell populations were: ACTA2, RGS5 and
PDGFRB (pericytes, clusters #8 and #10)59; KRT5, KRT14, TP63, ITGB1, and
ITGA6 (epidermal stem cells and other undifferentiated progenitors, clusters #7
and #15); KRT1, KRT10, SBSN, and KRTDAP (differentiated keratinocytes, cluster
#5); PDGFRA, LUM, DCN, VIM, and COL1A2 (fibroblasts, clusters #1, #2, #3 and
#9); AIF1, LYZ, HLA-DRA, CD68, and ITGAX (macrophages and dendritic cells
(DC), clusters #0, #13 and #16)60; CD3D, CD3G, CD3E, and LCK (T cells, cluster
#6)61; SELE, CLDN5, VWF, and CDH5 (vascular endothelial cells, cluster #4)62;
PROX1, CLDN5, and LYVE1 (lymphatic endothelial cells, cluster #12)63; HBA1,
HBA2, and HBB (erythrocytes, cluster #11)64 and PMEL, MLANA, TYRP1, and
DCT (melanocytes, cluster #14)65.

For the second-level clustering of the fibroblasts (Supplementary Figs. 4a, b) we
subsetted the cells and ran again the functions FindNeighbors() and FindClusters().
In this case, we used 20 PCA dimensions for both functions and a resolution of 0.5
for the FindClusters() function. For visualization we re-calculated the UMAP plot
with RunUMAP() function with default parameters and using 20 PCA dimensions.

Aiming to infer age-related differences, we first used the FindAllMarkers()
function to identify those genes whose expression is enriched in each cell cluster of
the young and old skin datasets separately. To obtain the genes differentially
expressed by each fibroblast cluster upon aging we used the FindMarkers() function.

For the gene ontology (GO) analyses, representative genes expressed by each
fibroblast cluster in the young and old datasets, or genes differentially expressed in
each cluster upon aging, were queried into the Gene Functional Annotation Tool
from the DAVID Bioinformatics Database (version 6.8). GO option
GOTERM_BP_ALL was selected and the first 8 GO terms with a p-value < 0.05
were chosen as significant categories.

Average gene expression for collagen genes and for the sets of genes defining
spatial identities was calculated for young and old fibroblast subpopulations and
projected onto UMAP or violin plots. To test for significance, a Wilcoxon Rank
Sum test was used.

To analyze the putative cell–cell interactions established by the distinct cell
types present in the human skin we used the publicly available repository
CellPhoneDB v2.0.050. This approach performed pairwise comparisons between all
cell clusters present in the young and old skin datasets. We also analyzed each
sample individually. Only receptors or ligands expressed by at least 10% of the cells
in a given cluster were used for the analysis. We used 1000 iterations for the young
and old datasets and 100 iterations for the individual analyses. Interactions with a
p-value < 0.05 were selected as significant.

RNA Fluorescence in situ hybridization (RNA FISH). FFPE blocks of young
(28–37 y/o) and old (54–89 y/o) skin donors, fixed in 4–10% formalin and cut into
4 µm sections, were subjected to RNA FISH using the RNAScope Multiplex Fluor-
escent Detection Kit v2 (ACDBio, cat. no. 323100) following manufacturer’s instruc-
tions with extended pretreatment of the samples. These pretreatment steps included a
15min incubation with hydrogen peroxide, a mild boil (98–102 °C) for 30min with
target retrieval reagents and a 30min incubation at 40 °C in the HybEZTM (ACDBio)
oven with Protease Plus (all solutions as included in the kit). Probes against human
CTHRC1 (ACDBio, cat. no. 413331), APCDD1 (ACDBio, cat. no. 535851-C2), CCL19
(ACDBio, cat. no. 474361), APOE (ACDBio, cat. no. 433091-C2), ASPN (ACDBio, cat.
no. 404481), CD248 (ACDBio, cat. no. 542501), and PDGFRA (ACDBio, cat. no.
604481-C3) mRNA molecules were used. Nuclei were counterstained with DAPI and
mounted using ProLong Gold Antifade Mountant (ThermoFisher, cat. no. P36930).
We performed the experiment in three young and three old sections for each target
gene, always including PDGFRA as a pan-fibroblast marker. Images were taken with a
TCS SP5 confocal microscope (Leica Microsystems) using 40X oil immersion lens and
were further processed using the Fiji software66.

APCDD1- and CTHRC1-positive cells were quantified in two images per dermal
region (papillary dermis, reticular dermis and deep reticular dermis) for each skin
section in young and old samples. Statistical analysis of the quantification of
APCDD1- and CTHRC1-positive cells was performed using a two-way ANOVA
test with Dunnett correction, which compared the percentage of positive cells in
the reticular and deep reticular areas to the percentage present in the papillary area
for each gene independently.

CD248 positive cells were quantified in two images of deep reticular dermis for
each skin section in young and old samples, respectively. Statistical analysis was
performed using an unpaired two-sided t-test, comparing the percentage of CD248
positive cells.

Immunohistochemistry (IHC). IHC assays were performed with six samples aged
37–79 y/o for Tetraspanin 8, three samples aged 51–66 y/o for Periostin, and one
sample of 37 y/o for the Collagen alpha-1(XVIII) chain. In all cases, remnant,
healthy whole-skin specimens were fixed overnight in 4% formalin in PBS,
paraffin-embedded and cut into 4 µm sections. Then, sections were deparaffinized
in xylene and rehydrated in a gradient of ethanol and distilled water prior to heat-
induced antigen retrieval. To that aim, slides were incubated for 30 min at 95 °C in
a water bath in 10 mM Citrate buffer (pH 6.0) containing 0.05% Tween-20.

For Tetraspanin 8 and Periostin staining, skin sections were permeabilized by
incubation with 0.4% Triton-X in 1% Normal Goat Serum (NGS) for 10 min, twice.
Subsequently, non-specific antibody binding was blocked by incubation with 10%
NGS for 1 h, followed by overnight incubation with primary antibodies diluted in
blocking solution at 4 °C. Primary antibodies used were rabbit anti-Tetraspanin 8
(Abcam, Ab230448, 1:200), mouse anti-Periostin (Santa Cruz, sc-398631, 1:100),
rabbit anti-Vimentin (Cell Signaling, D21H3, 1:100) and chicken anti-Vimentin
(Abcam, Ab24525, 1:2000). After washing with PBS with 0.1% Tween-20, a second
blocking step was performed with 10% NGS for 10 minutes.

For the Collagen alpha-1 (XVIII) chain staining, after antigen retrieval skin
sections were incubated with 1% BSA, 22.52 mg/ml glycine in PBS with 0,1%
Tween-20 for 1 h to block unspecific antibody binding. Then, samples were
incubated with primary antibodies in blocking solution at 4 °C overnight. The
mouse anti-Collagen alpha-1(XVIII) chain antibody (DB144-N2, 1:150)67 was a
kind gift from Dr. Ritva Heljasvaara from the University of Oulu (Finland).
Sections were also incubated with rabbit anti-Vimentin (Cell Signaling, D21H3,
1:100). After washing with PBS with 0.1% Tween-20 we directly proceeded to
secondary antibody incubation.

For Tetraspanin 8, Periostin and the Collagen alpha-1(XVIII) chain stainings,
sections were then incubated with corresponding Alexa Fluor-conjugated
secondary antibodies (Life Technologies, cat. no. A11034, A32732, and A21103) for
2 h at room temperature. Nuclear counterstaining was performed with DAPI and
slides were mounted with Vectashield Antifade Mounting Medium (Vector
Laboratories, cat. no. H-1000).
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Images were taken with a Leica TCS SP5 (Leica Microsystems) confocal
microscope using a ×40 oil immersion lens and were further processed using the
Fiji software66.

Statistics and reproducibility. Statistical analyses of the scRNA-seq data (n= 5,
see Supplementary Table 1) were carried out using the CellRanger and Seurat
packages in R, and Wilcoxon Rank Sum tests were used to perform gene expression
comparisons between cell clusters. Two-sided two-proportion z-tests were also
used to compare fibroblast proportions in G1 between young and old samples.

As stated above, RNA-FISH assays were performed in three biological replicates
per gene, and for quantification of APCDD1- and CTHRC1-positive cells we used a
two-way ANOVA test with Dunnett correction. To compare CD248 positive cells
we used an unpaired two-sided t-test. IHC experiments were performed in 1–6
replicates per gene.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
scRNA-seq datasets are available from the Gene Expression Omnibus (GEO) database
(accession number GSE130973). Any other data are available from the corresponding
authors upon reasonable request.
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